IIT Jodhpur and Western Michigan University develop infant mortality predictors using ML techniques

ML techniques

Researchers from the Indian Institute of Technology (IIT), Jodhpur and the Western Michigan University, USA have recognised noteworthy neonatal and infant mortality predictors using multiple machine learning (ML) techniques. The early warning indicators identified by the researchers include observable biological characteristics, demographic characteristics and socio-economic factors of households, mothers and new-borns.

“The primary objective of this research was to identify early warning signs of child mortality that community health workers can use. Reducing child mortality is a specific goal under the Sustainable Development Goals (SDG), 2030. Previous research in this direction has established that poor clinical knowledge among healthcare workers is one of the causes of child mortality in developing economies,” said Dweepobotee Brahma, Assistant Professor, Centre for Mathematical and Computational Economics, School of AI and Data Science at IIT Jodhpur.

“The early warning indicators identified in this study do not require advanced medical knowledge and can be easily used by community healthcare workers. The study uses a range of machine learning algorithms to assess the relative importance of characteristics such as being firstborns, being born in poorer households, and having a low birth weight,” Ms Brahma added.

The future goal is to extend and develop more streamlined screening criteria with the availability of more granular data with a combination of clinical and socio-economic characteristics.